The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares
نویسندگان
چکیده
منابع مشابه
The competition numbers of complete multipartite graphs and orthogonal families of Latin squares
The competition graph of a digraphD is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x inD such that (u, x) and (v, x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number ...
متن کاملMore mutually orthogonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.
متن کاملMaximal sets of mutually orthogonal Latin squares
Maximal sets of s mutually orthogonal Latin squares of order v are constructed for in nitely many new pairs (s; v). c © 1999 Published by Elsevier Science B.V. All rights reserved
متن کاملConcerning the number of mutually orthogonal latin squares
Let N(n) denote the maximum number of mutually orthogonal Latin squares of order n. It is shown that for large n,
متن کاملSome Constructions of Mutually Orthogonal Latin Squares and Superimposed Codes
Superimposed codes is a special combinatorial structure that has many applications in information theory, data communication and cryptography. On the other hand, mutually orthogonal latin squares is a beautiful combinatorial object that has deep connection with design theory. In this paper, we draw a connection between these two structures. We give explicit construction of mutually orthogonal l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2009
ISSN: 0012-365X
DOI: 10.1016/j.disc.2009.06.016